Estimating Siegel Modular Forms of Genus 2 Using Jacobi Forms

نویسنده

  • Hiroki Aoki
چکیده

We give a new elementary proof of Igusa's theorem on the structure of Siegel modular forms of genus 2. The key point of the proof is the estimation of the dimension of Jacobi forms appearing in the FourierJacobi development of Siegel modular forms. This proves not only Igusa's theorem, but also gives the canonical lifting from Jacobi forms to Siegel modular forms of genus 2.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multilinear Operators on Siegel Modular Forms of Genus

Classically, there are many interesting connections between differential operators and the theory of elliptic modular forms and many interesting results have been explored. In particular, it has been known for some time how to obtain an elliptic modular form from the derivatives ofN elliptic modular forms, which has already been studied in detail by R. Rankin in [9] and [10]. When N = 2, as a s...

متن کامل

Differential Operators on Jacobi Forms of Several Variables

The theory of the classical Jacobi forms on H × C has been studied extensively by Eichler and Zagier[?]. Ziegler[?] developed a more general approach of Jacobi forms of higher degree. In [?] and [?], Gritsenko and Krieg studied Jacobi forms on H × Cn and showed that these kinds of Jacobi forms naturally arise in the Jacobi Fourier expansions of all kinds of automorphic forms in several variable...

متن کامل

Elliptic Genus of Calabi–yau Manifolds and Jacobi and Siegel Modular Forms

In the paper we study two types of relations: a one is between the elliptic genus of Calabi–Yau manifolds and Jacobi modular forms, another one is between the second quantized elliptic genus, Siegel modular forms and Lorentzian Kac–Moody Lie algebras. We also determine the structure of the graded ring of the weak Jacobi forms with integral Fourier coefficients. It gives us a number of applicati...

متن کامل

Ramanujan Congruences for Siegel Modular Forms

We determine conditions for the existence and non-existence of Ramanujan-type congruences for Jacobi forms. We extend these results to Siegel modular forms of degree 2 and as an application, we establish Ramanujan-type congruences for explicit examples of Siegel modular forms.

متن کامل

The Siegel modular forms of genus 2 with the simplest divisor

We prove that there exist exactly eight Siegel modular forms with respect to the congruence subgroups of Hecke type of the paramodular groups of genus two vanishing precisely along the diagonal of the Siegel upper half-plane. This is a solution of a problem formulated during the conference “Black holes, Black Rings and Modular Forms” (ENS, Paris, August 2007). These modular forms generalize the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999